TOPIC: VECTORS (A' LEVEL)

jkbegumisa2025@gmail.com

+256786108453/+256700798389

© JK BEGUMISA

"Revise, Reflect, Achieve"

- This leaflet contains well-researched about mathematics vectors related questions.
- It's meant to boost confidence, enhance question interpretation and familiarize A' level Maths students with topic content.
- **JK** reserves the right to any error and comment in & about this leaflet.

REVISION QUESTIONS

- 1. In a triangle OAB, X is a point on OB such that $\overrightarrow{OX} = 2\overrightarrow{XB}$ and Y is a point on AB such that $2\overrightarrow{BY} = 3\overrightarrow{YA}$.
 - i) Express \overrightarrow{OX} and \overrightarrow{OY} in terms of \boldsymbol{a} and \boldsymbol{b} where $\boldsymbol{a} = \overrightarrow{OA}$ and $\boldsymbol{b} = \overrightarrow{OB}$.
 - ii) Find the position vector of any point on XY, and hence, find the position vector of point Z, where \overline{XY} produced meets \overline{OA} produced.
 - iii) Calculate the ratio of \overrightarrow{AZ} : $\overrightarrow{0Z}$
- 2. In a triangle OAB, $\overrightarrow{OA} = \boldsymbol{a}$ and $\overrightarrow{OB} = \boldsymbol{b}$. A point L is on the side AB and M on the side OB. OL and AM meet at S. $\overrightarrow{AS} = \overrightarrow{SM}$ and $\overrightarrow{OS} = \frac{3}{4}\overrightarrow{OL}$. Given that $\overrightarrow{OM} = n\overrightarrow{OB}$ and $\overrightarrow{AL} = m\overrightarrow{AB}$. Express the vectors;
 - a) AM and OS in terms of a, b and n.
 - b) *OL* and *OS* in terms of **a**, **b** and m

 Hence, find the values of n and m.

- 3. In a triangle OPR, $\overrightarrow{OP} = \mathbf{p}$ and $\overrightarrow{OR} = \mathbf{r}$. Points A and B lie on \overrightarrow{OP} and \overrightarrow{RP} respectively such that \overrightarrow{RB} : $\overrightarrow{RP} = 3$: 7 and \overrightarrow{OP} : $\overrightarrow{AP} = 3$: 1. Lines AB and OR are both produced to meet at point M. find the position vector of M in terms of \mathbf{r} .
- 4. a) If $\mathbf{a} = 2\mathbf{i} + \lambda \mathbf{j} + \mathbf{k}$ and $\mathbf{b} = \beta \mathbf{i} + 4\mathbf{j} \frac{\gamma}{2}\mathbf{k}$ are equal, find the values of λ , β and γ .
 - b) Given that the position vectors; $\mathbf{i} + \mu \mathbf{j} 3\mathbf{k}$, $2\mathbf{i} \mathbf{j} + 2\mathbf{k}$ and $3\mathbf{i} + \mathbf{j} \mathbf{k}$ are co-planar, find the value of μ .
- 5. Given that; $\mathbf{m} = 2\mathbf{i} + \beta \mathbf{j}$, $\mathbf{n} = \mu \mathbf{i} 3\mathbf{j}$ and $\mathbf{c} = \mathbf{i} \mathbf{j}$. Find the value of;
 - i). β if m is perpendicular to c.
 - ii). μ if n is parallel to c.
- 6. A quadrilateral ABC has vertices A, B and C with position vectors -4i + 6j, 3i + 5j, 4i 2j and -3i j respectively. Verify whether the quadrilateral is a rhombus or a parallelogram.
- 7. The vertices of a quadrilateral ABC are A(-3,2), B(1,-2), C(5,2) and D(1,6). Prove whether ABCD is a rectangle, rhombus, parallelogram or a square.
- 8. a) The position vectors of points A, B and C are i + 2j + k, 2i + j 3k and 5i 2j 15k respectively. Show that A, B and C are collinear. Hence deduce the ratio in which B divides \overline{AC} .
 - b) Given that $\mathbf{a} = \alpha \mathbf{i} + (2 + \alpha)\mathbf{j} + 3\mathbf{k}$ and $\mathbf{b} = 3\mathbf{j} \mathbf{i} + (4 \alpha)\mathbf{k}$ are perpendicular to one another, find the value of α .
- 9. a) Using vectors, find the acute angle between lines; 2y = x + 3 and 3y + 2x = 1
 - b) Given the position vectors $\mathbf{n} = \mathbf{i} \mathbf{j} + 3\mathbf{k}$ and $\mathbf{r} = -2\mathbf{i} + \mathbf{k}$, find the;
 - i). a unit vector normal to both \mathbf{n} and \mathbf{r} .
 - ii). angle between vectors \mathbf{n} and \mathbf{r} .

(In each case, Use both cross and dot product)

- 10. The points A, B and C have position vectors 4i + 10j + 6k, 6i + 8j 2k and i + 10j + 3k respectively.
 - a) Show A, B and C are the vertices of a triangle

- b) Prove that a triangle ABC is right angled.
- c) Using vector product, find the size of $\langle ABC \rangle$
- d) Solve the triangle ABC
- 11. Find the area of a rectangle whose adjacent sides are represented by position vectors $3\mathbf{i} \mathbf{j} + 2\mathbf{k}$ and $5\mathbf{i} \mathbf{j} 8\mathbf{k}$.
- 12. The points A, B and C have position vectors -2i + 3j, i 2j, 8i 5j respectively.
 - a) Find the equation of line AC
 - b) Determine the co-ordinates of point D, if ABCD is a parallelogram
 - c) Write down the vector equation of the line through point B perpendicular to AC and find where it meets AC.
- 13.A point P divides points A and B whose position vectors are respectively; $\mathbf{j} \mathbf{i} + 3\mathbf{k}$ and $-3\mathbf{k} + \mathbf{i}$ in the ratio 2:1. Find the **position vector** of P if it divides \overline{AB} ;
 - a) Internally
 - b) Externally
- 14. The position vectors of points; A, B and C are $\mathbf{i} + 2\mathbf{j} + \mathbf{k}$, $2\mathbf{i} + \mathbf{j} 3\mathbf{k}$ and $5\mathbf{i} 2\mathbf{j} 15\mathbf{k}$ respectively. Show that A, B and C are collinear. Hence, deduce the ratio in which B divides AC.
- 15. The line l has Equation: $r = i + 2j + 3k + \gamma(2i j 2k)$. A point P has position vector 4i + 2j 3k. Find the length of the perpendicular from P to l. (*Use both cross and dot product*)
- 16. The points A and B have position vectors $\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$ and $4\mathbf{i} + 3\mathbf{j}$ respectively, relative to the origin O.
 - a) Find the lengths OA and OB
 - b) Find the scalar product of OA and OB. Hence, find angle AOB.
 - c) Find the area of triangle AOB, giving your answers correct to 3 dps.
 - d) The point C divides AB in the ratio β : 1β
 - i) Find the expression of $\overrightarrow{0C}$

- ii) Show that $\left|\overrightarrow{OC}\right|^2 = 14\beta^2 + 2\beta + 9$.
- iii) Find the position vectors of the two points on AB whose distance from O is $\sqrt{21}$
- iv) Show that the shortest (perpendicular) distance of O from AB is approximately 2.99 units.
- 17. Three points P, Q and R have position vectors 7i + 10j, 3i + 12j and -i + 4j.
 - a) Write down the vectors \overrightarrow{PQ} and \overrightarrow{RQ} , and show that they are perpendicular.
 - b) Using a scalar product or otherwise, find angle PRQ
 - c) Find the position vector of S, the midpoint of PR
 - d) Show that $|\overrightarrow{QS}| = |\overrightarrow{RS}|$. Using your previous results or otherwise, find angle PSQ
- 18. The cartesian equation of the line is given by; $\frac{2-x}{-3} = \frac{y-3}{1} = \frac{4-2z}{2}$. Find;
 - a) Direction vector of the line
 - b) Two points that lie on a line
 - c) Vector equation of the line that passes through a point with position vector $-\mathbf{k} + 4\mathbf{j}$ and is parallel to the given line.
- 19. Find the co-ordinates of P_2 if $2P_0P_1 = 3P_1P_2$ where $P_0(-2,7,4)$ and $P_1(7,-2,1)$.
- 20. The lines l_1 and l_2 have vector equations; $\mathbf{r}_1 = 2\mathbf{i} \mathbf{j} + 4\mathbf{k} + \alpha(\mathbf{i} + \mathbf{j} \mathbf{k})$ and $\mathbf{r}_2 = -2\mathbf{i} + 2\mathbf{j} + \mathbf{k} + \beta(-2\mathbf{i} + \mathbf{j} + \mathbf{k})$ respectively.
 - a) Show that l_1 and l_2 are skew.
 - b) Hence, find the distance between l_1 and l_2
 - c) The point P lies on l_1 and point M has a position vector $2\mathbf{i} \mathbf{k}$.
 - i). Given that the line PM is perpendicular to l_1 , find the position vector of P. Hence, write the cartesian Equation of line PM
 - ii). Verify that M lies on l_2 , and that PM is perpendicular to l_2 .
- 21. With respect to the origin O, the points A and B have position vectors given by $\overrightarrow{OA} = 2\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ and $\overrightarrow{OB} = \mathbf{i} + 4\mathbf{j} + 3\mathbf{k}$. The line l has vector equation: $\mathbf{r} = 4\mathbf{i} 2\mathbf{j} + 2\mathbf{k} + \beta(\mathbf{i} + 2\mathbf{j} + \mathbf{k})$.

- a) Prove that l does not intersect the line through A and B.
- b) Hence, find the shortest distance between *l* and line AB.
- 22. Relative to the origin O, the position vectors of P and Q are given by $\overrightarrow{OP} = 2\mathbf{i} + 3\mathbf{j} \mathbf{k}$ and $\overrightarrow{OQ} = 4\mathbf{i} 3\mathbf{j} + 2\mathbf{k}$.
 - a) Use vector product to find angle POQ, correct to the nearest degree.
 - b) Find the unit vector in the direction of \overrightarrow{PQ} .
 - c) The point R is such that $\overrightarrow{OR} = 6\mathbf{j} + m\mathbf{k}$, where m is a constant. Given that the lengths of \overrightarrow{PQ} and \overrightarrow{PC} are equal. Find the possible values of m.
- 23. The position vectors of points A and B are $\begin{pmatrix} -3 \\ 6 \\ 3 \end{pmatrix}$ and $\begin{pmatrix} -1 \\ 2 \\ 4 \end{pmatrix}$ respectively, relative to the origin O.
 - a) Calculate angle AOB.
 - b) The point C is such that AC = 3AB, find the *unit position vector* in the direction of \overrightarrow{OC} .
- 24.a) Find the equation of the line through points A and B with position vectors 3i j + 4k and -4k + j
 - b) A point C has position vector 6i + 4j + 5k. Find the perpendicular distance of C from the line in a) above
 - c) The position vectors of three points A, B and C are p, 3q p and 9q 5p respectively. Show that the points are collinear.
- 25. Find the cartesian equation of a line that passes through three points; A(-2,0,4), B(5,2,6) and C(3,-1,-4).

(<u>Hint:</u> For three collinear points, $r = \overrightarrow{OA} + \beta \overrightarrow{BC}$).

- 26. The line l has equation: $\mathbf{r} = \begin{pmatrix} -2 \\ 1 \\ 4 \end{pmatrix} + \beta \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$ and point P has position vector $\begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$.
 - a) Show that P does not lie on the line l

b) Given that a circle with centre P intersects l at points A and B, and A has position vector

$$\begin{pmatrix} 0 \\ -3 \\ 4 \end{pmatrix}$$
. Find the position vector of B. **Ans:** B(0,-3,6) OR B(-3,3,3)

27. Given the lines:

$$l_1$$
: $r_1 = -k + i + 2j + \gamma(4j + 5i + 3k)$ and l_2 : $r_2 = 3\beta k + 2i + 4\beta j + k + 5\beta i$.
Show that;

- a) l_1 and l_2 are parallel.
- b) Perpendicular distance between l_1 and l_2 is $\frac{21\sqrt{2}}{10}$ units.
- 28. The line equation l_o has equation: $\frac{x-1}{2} = \frac{1-y}{2} = \frac{z+3}{-1}$ and the point A has co-ordinates (1,-
 - 2,1). Find the cartesian equation of the line that is perpendicular to l_o and passes through

A.
$$Ans: \left(\frac{x-1}{8} = y - 2 = \frac{z+1}{14}\right)$$

- 29. The points A and B have position vectors $2\mathbf{i} + \mathbf{j} + 3\mathbf{k}$ and $4\mathbf{i} + \mathbf{j} + \mathbf{k}$ respectively. The line l has equation: $\mathbf{r} = 4\mathbf{i} + 6\mathbf{j} + t(\mathbf{i} + 2\mathbf{j} 2\mathbf{k})$. Point J lies on the line l such that $P\hat{A}B = 120^{\circ}$. Show that:
 - a) $3t^2 + 8t + 4 = 0$
 - b) Position vector of J is 2i + 2j + 4k.
- 30. The straight line l_1 passes through the points A(2,5,9) and B(6,0,10) and another line l_2 has

equation:
$$\mathbf{r} = \begin{pmatrix} 8 \\ 8 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}$$
.

- a) Show that Point A is the intersection of l_1 and l_2 .
- b) Show further that l_1 and l_2 are perpendicular to each other
- 31. The points with co-ordinates A(7,6,10), B(6,5,6) and C(1,0,4) are the vertices of a parallelogram ABCD
 - a) Find the;
 - i) Co-ordinates of D
 - ii) Vector equation of the line *l* that passes through points A and C.

- b) Show that the;
 - i) Shortest distance of l from B is $\sqrt{6}$ units.
 - ii) Exact area of a parallelogram ABCD is $18\sqrt{2}$ square units

32. Given the lines:
$$l_1$$
: $\mathbf{r} = \begin{pmatrix} 2 \\ 5 \end{pmatrix} + \beta \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ and l_2 : $\mathbf{r} = \begin{pmatrix} 3 \\ -3 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 2 \end{pmatrix}$.

- a) Show that l_1 and l_2 are perpendicular.
- b) Find the position vector of their point of intersection.
- 33. The vectors \mathbf{a} and \mathbf{b} are such that $|\mathbf{a}| = 3$, $|\mathbf{b}| = 12$ and \mathbf{a} . $\mathbf{b} = 18$. Show clearly that; $|\mathbf{a} \mathbf{b}| = 3\sqrt{13}$.
- 34. Relative to a fixed origin O, the straight lines l and m have vector equations; $\mathbf{r}_1 = \begin{pmatrix} p \\ 4 \\ 5 \end{pmatrix} + \frac{1}{5}$

$$\gamma \begin{pmatrix} q \\ -1 \\ 2 \end{pmatrix}$$
 and $\mathbf{r}_2 = \begin{pmatrix} 9 \\ 0 \\ 16 \end{pmatrix} + \beta \begin{pmatrix} 1 \\ -2 \\ 7 \end{pmatrix}$ where γ and β are scalar parameters, p and q are scalar

constants. The point A is the intersection of l and m, and the cosine of acute angle θ between l and m is $\frac{1}{3}\sqrt{6}$

- a) Find the values of p and q, given that q is a positive integer.
- b) Determine the co-ordinates of A.

The points B has co-ordinates B(12,5,9)

- c) Show that the;
 - i) Cosine of the acute angle φ between A and line l is $\frac{1}{3}$.
 - ii) $\varphi = 2\theta$. Ans: (q = 2, p = 0 and A(8,2,9))
- 35. The point A has position vector $-\mathbf{i} + 7\mathbf{j} \mathbf{k}$.
 - a) Find the vector equation of the straight line l_1 which passes through A and parallel to the vector $3\mathbf{i} 2\mathbf{j} + 2\mathbf{k}$.

The straight line l_2 has equation: $\mathbf{r}_2 = 9\mathbf{i} - 9\mathbf{j} + 8\mathbf{k} + \beta(3\mathbf{i} - 3\mathbf{j} + 4\mathbf{k})$. Show that;

b) l_1 and l_2 do not intersect, and find the least distance between them.

- c) Vector $2\mathbf{i} + 6\mathbf{j} + 3\mathbf{k}$ is perpendicular to both l_1 and l_2 .
- d) Point P lies on l_1 and M lies on l_2 so that \overline{PM} is least, find the co-ordinates of P and M.

Ans:
$$[P(5,3,3) \text{ and } M(3,-3,0)]$$

36. The straight lines l_1 and l_2 have the following vector equations:

 $r_1 = i - 5j + \alpha(4j - k)$ and $r_2 = 4i - 3j + k + \beta(3i - 2j + 2k)$ where α and β are scalar parameters.

- a) Given that l_1 and l_2 intersect at point Q. Find the position vector of Q.
- b) Given that P lies on l_1 and has position vector $\mathbf{i} + p\mathbf{j} 3\mathbf{k}$. Find the value of p. (Ans: p = 7)
- c) The point T lies on l_2 so that $|\overrightarrow{PQ}| = |\overrightarrow{QT}|$, determine the possible position vectors of T. $(\mathbf{Ans:} -5\mathbf{i} + 3\mathbf{j} 5\mathbf{k}, 7\mathbf{i} 5\mathbf{j} + 3\mathbf{k})$
- 37. Determine whether the following pairs of lines are parallel, concurrent (coincident) or

skew:
$$r_1 \equiv \begin{cases} x = 4 + 5t \\ y = 3 + 2t \\ z = 3t \end{cases}$$
 and $r_2 \equiv \begin{cases} x = -5 + 2\beta \\ y = 4 - \beta \\ z = 1 \end{cases}$

38. The straight lines l_1 and l_2 have respective vector equations;

 $r_1 = (2i - j + k) + \mu(j + 3k)$ and $r_2 = (i + 2j + 3k) + \beta(i + 2k)$ where μ and β are scalar parameters. Show that;

- a) l_1 and l_2 are skew
- b) Shortest distance between l_1 and l_2 is $\frac{5}{\sqrt{14}}$ Units using;
 - i) Dot product
 - ii) Cross product
- 39. Find the area of a triangle whose adjacent sides are represented by vectors; 2i 3j + 5k and -k + 4j
- 40. Calculate the area of a parallelogram whose adjacent sides are represented by vectors; 3i k and i 4j + k.
- 41.Lines l_1 , l_2 and l_3 are given by the equations:

$$\frac{x+5}{2} = \frac{y-14}{-10} = \frac{z+13}{11} = \alpha, \frac{x-3}{2} = \frac{y+5}{-3} = \frac{z+17}{-5} = \beta \text{ and } x = y+5 = \frac{z-7}{-2} = \gamma \text{ respectively.}$$

Given that l_1 intersects l_2 at A while l_1 intersects l_3 at B, find the distance AB.

- **42.** Find the equation of the line perpendicular to the plane 3x 7y + 2z = 8 and passing through a point with position vector -5j + k i.
- **43.**Show that the least distance of A(0,3,5) from the line $\mathbf{r} = 2\mathbf{i} + \beta \mathbf{k} \mathbf{j} \beta \mathbf{i} + 3\mathbf{k} + 2\beta \mathbf{j}$ is zero.
- **44.** Find the angle between vector 3k 4j and the line $r = -\beta j$.

PLANES

- 45. Find the equation of the plane that contains points; (1,3,2), (2,1,-1) and (2,4,1) in;
 - a) Scalar,
 - b) Cartesian, form.
- 46. Find the cartesian equation of the plane that contains a point whose position vector is i 4k + 2j and normal to the vector 3j + k 4i.
- 47. Two lines; l_1 and l_2 have equations; $\mathbf{r}_1 = \begin{pmatrix} 5 \\ 1 \\ -4 \end{pmatrix} + \beta \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$ and $\mathbf{r}_2 = \begin{pmatrix} p \\ 4 \\ -2 \end{pmatrix} + t \begin{pmatrix} 2 \\ 5 \\ -4 \end{pmatrix}$ respectively, and p is a constant. If l_1 and l_2 intersect at Q, find the;
 - i) Value of p
 - ii) Position vector of Q
 - iii) Equation of the plane containing l_1 and l_2 .
- 48.A point M has position vector 3i 2j + k. The line l has equation $r = 4i + 2j + 5k + \gamma(i + 2j + 3k)$. Find the cartesian equation of the plane containing l and M.

(Ans:
$$4x + y - 2z = 8$$
)

49. Given the equation of the plane,
$$\pi$$
: $\mathbf{r} = \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix} + \beta \begin{pmatrix} 1 \\ -4 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} -3 \\ 2 \\ 0 \end{pmatrix}$. Find the;

- a) Normal vector to π
- b) Cartesian equation of π

- c) Angle with which π makes with the line l: $\frac{1-x}{2} = \frac{y+2}{1} = \frac{z+3}{4}$. Hence, find the coordinates of the point of contact.
- 50. Find the equation of the plane that contains points whose position vectors are respectively; 2i 3k and -j + i 4k.
- 51.A line l is given by the vector equation: $\mathbf{r} = \begin{pmatrix} \mathbf{3} \\ -\mathbf{1} \\ \mathbf{4} \end{pmatrix} + \beta \begin{pmatrix} -2 \\ 3 \\ 1 \end{pmatrix}$ and a point N has a position vector $3\mathbf{i} \mathbf{j} + 4\mathbf{k}$.
 - a) Find the cartesian equation of a plane π_1 that contains l and N.
 - b) Given that a line l_0 passes through a point with position vector -6k + 2i j and is parallel to π . Find the cartesian equation of l_0 .
 - c) Hence, find the least distance between l and l_0 .
- 52. The planes π_1 and π_2 have equations: 3x + y 2z = 10 and x 2y + 2z = 5 respectively. The line l has equation $r = 4i + 2j + k + \beta(i + j + 2k)$.
 - a) Show that l is parallel to π_1
 - b) Calculate the acute angle between π_1 and π_2
 - c) Point P lies on l, the perpendicular distance of P from the plane π_2 is equal to 2. Find the two position vectors of P.
- 53. Three points (-3,-6,11), (2,-1,6) and (6,0,-10) lie on the plane π .
 - a) Find the cartesian equation of π
 - b) Verify that point (7,2,-7) lies on the plane π .
- 54.a) Find the vector equation of the line passing through the point (3,1,2) and perpendicular to the plane $\mathbf{r} \cdot (2\mathbf{i} \mathbf{j} + \mathbf{k}) = 4$. Hence, find the point of intersection of the line and the plane.
 - c) The position vectors of the points A, B and C are 2i j + 5k, i 2j + k and 3i + j 2k respectively. Given that L and M are midpoints of AC and CB respectively. Show that BA = 2ML
- 55. Show that P(1,2,-1) and Q(3,6,1) lie on opposite sides of the plane; x + y + 4z = 5

- 56. Find the cartesian equation of the plane through the points A(1,0,-2) and B(3,-1,1) which is parallel to the line with vector equation $\mathbf{r} = 3\mathbf{i} + (2t-1)\mathbf{j} + (5-t)\mathbf{k}$. Hence, find the co-ordinates of the point of intersection of this plane and the line $\mathbf{r} = \mu \mathbf{i} + (5-\mu)\mathbf{j} + (2\mu 7)\mathbf{k}$.
- 57.A plane contains points A(4,-6,5) and B(2,0,1). A perpendicular to the plane from the point P(0,4,-7) intersects the plane at point C. find the co-ordinates of C.
- 58. Find the equation of a plane parallel to the vectors $r_1 = i + 3j + 5k$ and $r_2 = 4i j + 2k$ which passes through a point with position vector 2i + 3k.
- 59.a) If M is the foot of a perpendicular from point A(5,-3,2) to the line $\frac{x-1}{2} = \frac{y-4}{1} = \frac{z-2}{-1}$. Determine the co-ordinates of M.
 - b) Find the equation of the plane through points M, A and B(-1,4,2) on the line. Hence, determine the angle ABM.
- 60.*l* is a line: $\frac{x}{2} = \frac{y-1}{1} = \frac{z+1}{-1}$ and π is the plane: x 4y 2z = 5.
 - a) Show that l is parallel to π , and calculate the distance between l and π
 - b) Find the cartesian equation of a second plane π_0 which contains l and is perpendicular to π .
- 61. Determine the cartesian equation of the plane that is parallel to the line with equation x = -2y = 3z and contains the line of intersection of two planes: x y + z = 1 and 2y z = 0 (Ans: 8x + 14y 3z = 8)
- 62. A plane π passes through point A(3,1,4).

Find the cartesian equation of π that passes through the intersection of two planes: x + 2y + 3z = 1 and 2x - y + z = -3. (Ans: x - 2y - z + 3 = 0).

- 63. Find the co-ordinates of the point of intersection of the line: $x = \frac{y+1}{2} = \frac{z+1}{3}$ and the plane that passes through A(4,0,1), B(0,-3,0) and C(6,3,3).
- 64. Show that (2,4,1) lies on the plane that contains points; (4,2,3), (5,1,4) and (-2,1,1).
- 65. Find the equation of the plane that passes through points (1,1,0), (4,-2,1) and is perpendicular to the plane 3x + y z = 2. (Ans: x + 3y + 6z = 4)

- 66. Find the equation of the plane containing a line: $\frac{1-x}{-2} = \frac{1-y}{-1} = \frac{z+2}{-1}$ and is perpendicular to the plane x 2y + 3z = 1. (Ans: x 7y 5z = 4).
- 67. Show that the lines: $\frac{x-1}{2} = \frac{y-3}{-1} = \frac{z+2}{4}$ and $r = \begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix} + \gamma \begin{pmatrix} -2 \\ 1 \\ -4 \end{pmatrix}$ are parallel to each other.

Find the cartesian equation of the plane containing the two lines.

- 68. A line l and a plane π have the following equations:
 - l: $\frac{x+1}{2} = \frac{y-3}{5} = \frac{z+2}{-1}$ and $\pi: x + y + z = 12$. Given that l and π meet at point A.
 - a) Find the position vector of A
 - b) Calculate the angle between l and π .
 - c) Find the cartesian equation of a plane π_1 that;
 - i) contains l and a point whose position vector is 2i 3j + k.
 - ii) Is parallel to plane π and contains a point A(1,-2,3)
 - iii) Is perpendicular to plane π and contains l.
- 69.Line l passes through R(3,1,-2) and S(4,-1,2). A plane OMN where O is the origin, and M and N have position vectors 3j and i + 2j respectively meets l at A.

Find the co-ordinates of l.

- 70. A vector $-\mathbf{j} + \mathbf{k} 3\mathbf{i}$ is parallel to the plane that contains two points A(1,1,2) and B(3,0,4).
 - a) Write down the vector equation of the plane. Hence, or otherwise, find the cartesian equation of the plane.
 - b) Calculate the distance of the point C(5,4,-5) from the plane in a) above.
- 71. The distance of the point A(4,-1,2) from the plane is $\sqrt{3}$ units. Given that the vector $\mathbf{i} + \mathbf{j} + \mathbf{k}$ is normal to the plane, find the cartesian equation of the plane.
- 72. Find the equation of a plane through a point (3,-6,-7) and orthogonal to the line parametrically given by;

$$r = \begin{cases} x = 2 + 3t \\ y = 1 + 4t \\ z = 7 - 8t \end{cases}$$

73. Find the equation of the plane π containing the following lines;

a)
$$\frac{x-1}{2} = \frac{y}{-1} = \frac{z+3}{1}$$
 and $\frac{x-4}{1} = \frac{y+3}{1} = \frac{z+3}{2}$.

b)
$$\frac{x+3}{-3} = \frac{y-1}{1} = \frac{z-5}{5}$$
 and $\frac{x+1}{-1} = \frac{y-2}{2} = \frac{z-6}{6}$.

c)
$$r_1 = t\mathbf{i} + (3t - 6)\mathbf{j} + (t + 1)\mathbf{k}$$
 and $r_2 = (2t - 4)\mathbf{i} + (t - 3)\mathbf{j} + \mathbf{k}$.

d)
$$\frac{x-1}{-4} = y = z + 1$$
 and $\frac{x+1}{-4} = y - 1 = z - 3$.

- e) $\frac{x-1}{2} = \frac{y+1}{-1} = \frac{z}{3}$ and $\frac{x}{4} = \frac{y-2}{-2} = \frac{z+1}{6}$. Also, find whether the line $\frac{x-2}{3} = \frac{y-1}{1} = \frac{z-2}{5}$ lies on the plane.
- 74. The co-ordinates of the points A and B are (0,2,5) and (-1,3,1) respectively, and the line l has equation: $\frac{x-2}{2} = \frac{y-2}{-2} = \frac{z-2}{-1}$.
 - a) Find the equation of the plane π which contains point A and is perpendicular to l, and verify that point B lies on π
 - b) Show that point C at which line l meets π is (1,4,3), and find the angle between CA and CB.
- 75. Find the co-ordinates of point on the line whose equation: $x = \frac{y+1}{2} = \frac{z+1}{3}$ which is 2 Units from a plane which contains points A(4,0,1), B(0,-3,2) and C(6,3,3).
- 76. Given the equations of three planes: 2x y + 3z = 4, 3x 2y + 6z = 3 and 7x 4y + 5z = 11. Find their point of intersection.
- 77. The equations of the two planes π_1 and π_2 are;

$$r_1 = \begin{pmatrix} \mathbf{1} \\ \mathbf{0} \\ \mathbf{1} \end{pmatrix} + \beta \begin{pmatrix} 1 \\ -2 \\ \mathbf{2} \end{pmatrix} + \alpha \begin{pmatrix} 0 \\ 3 \\ 2 \end{pmatrix} \text{ and } r_2 = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} + t \begin{pmatrix} 4 \\ 0 \\ 5 \end{pmatrix} + \rho \begin{pmatrix} -2 \\ 4 \\ 3 \end{pmatrix}.$$

- a) Find the line l of intersection of π_1 and π_2
- b) Find the cosine of the acute angle between π_1 and π_2
- c) Show that the length of the perpendicular from the point (1,5,1) to l is $\sqrt{2}$ Units.
- d) Calculate the angle between π_1 and π_2 .
- 78. Find the shortest distance from the origin to the plane 3x 4y z + 26 = 0

79. Find the cartesian equation of the plane π_0 that contains a point whose position vector is

$$i - j$$
 and is orthogonal to the line l : $r = \begin{cases} x = 3 + 2t \\ z = -t + 3 \\ y = 1 + 3t \end{cases}$.

- 80. Find the perpendicular distance of the point (2,1,0) from the plane -x 5y + 2z = 9
- 81. Find the distance of the point (-1,-5,-10) from the point of intersection of the plane

$$x + 3y - 2z = 3$$
 and the line $\frac{x-1}{3} = \frac{1-z}{-4} = y - 2$.

- 82. Find the position vector of the point of intersection of the line: $\frac{x-2}{3} = \frac{y+1}{4} = \frac{z-2}{12}$ and the plane: x y + z = 16.
- 83. Points A, B and C are such that $OA = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$, $OB = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}$ and $OC = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}$. Find the equation of the plane π perpendicular to AB and contains point C.
- 84. The point M has co-ordinates (2,0,-1) and the plane π has the equation x+2y-2z=8. The line through M parallel to line l: $\frac{x}{2}=y=\frac{z+1}{1}$ meets π at point C.
 - a) find the co-ordinates of C.
 - b) find the length of MC
- 85. Given that lines: l_1 : $\mathbf{r} = \mathbf{i} + 2\mathbf{k} + t(2\mathbf{i} \mathbf{j} + \mathbf{k})$ and $\mathbf{r} = -2\mathbf{i} + 2\mathbf{j} + \mathbf{k} + \beta(-3\mathbf{i} + 2\mathbf{j} \mathbf{k})$ intersect at A.
 - a) Find the co-ordinates of A
 - b) Cartesian equation of the plane π_0 containing l_1 and l_2 .
 - c) Cartesian equation of the plane π that contains a point J(3,-2,1) and is parallel to π_0
 - d) Symmetric equation of the line l that is normal to π_0 and passes through A(0,-1,1)
- 86. Find the co-ordinates of the point of intersection of lines:

$$l_1: \frac{x-1}{3} = \frac{y-1}{-1} = \frac{z+1}{0}$$
 and $l_2: \frac{x-4}{2} = \frac{y}{0} = \frac{z+1}{3}$. Hence, find the;

- a) Equation of the plane π containing l_1 and l_2 in the form $\boldsymbol{r}.\,\boldsymbol{n}=D$
- b) Vector equation of the line l_0 normal to both l_1 and l_2 and passes through B(1,2,-4)
- c) Cartesian equation of the plane π_1 that contains A(5,-1,2) and l_0

- d) Perpendicular distance of π_1 from the origin.
- 87.A plane π contains a point whose position vector is $\mathbf{i} 2\mathbf{j} \mathbf{k}$ and is parallel to two lines l_1 and l_2 parametrically given as:

$$r_1 = \begin{cases} x = 2 + \beta \\ y = 3\beta - 4 \\ z = 1 - 2\beta \end{cases}$$
 and $r_2 = \begin{cases} z = 6\gamma + 1 \\ x = -3 - 9\gamma \\ y = -3\gamma \end{cases}$

- a) Write down the general vector equation of π .
- b) Find the;
 - i) Normal vector of π
 - ii) Cartesian equation of π
 - iii) Shortest distance of l_1 from π .
- 88. Given that a = 3i j + k and b = -j + 2k + 3i. Find the;
 - a) Angle between \boldsymbol{a} and \boldsymbol{b}
 - b) Unit vector normal to both \boldsymbol{a} and \boldsymbol{b}
 - c) Plane π that contains \boldsymbol{a} and \boldsymbol{b}
 - d) Line l that passes through points A and B with above position vectors \boldsymbol{a} and \boldsymbol{b} respectively
 - e) Plane π_0 that is parallel to π , and contains point A(3,-1,0)
 - f) Plane π_1 that is normal to π and contains l.
- 89. Find the parametric equations of the line of intersection of planes π_1 and π_2

$$\pi_1$$
: $x + 2y - 3z = 4$ and π_2 : $3x - 4y + z = -3$

- 90. Using the general cartesian equation of the plane: ax + by + cz + d = 0, find the equations of planes that contain the following points;
 - a) (2,3,1), (1,-1,2) and (2,1,-2)
 - b) (0,0,2), (1,2,3) and (-2,0,-1)
- 91. Find the angle between the line: $\frac{x+2}{2} = \frac{1-z}{-1} = \frac{1+y}{3}$ and the plane; 3x + y + z = 1
- 92. Show that the point (1,2,-3) lie on the plane 2x + y z = 7.

- 93. A plane π contains points; (1,2,5), (1,0,4) and (5,2,1). Show whether or not a point with position vector $-4\mathbf{k} + 2\mathbf{i} + \mathbf{j}$ lies on π .
- 94. Find the distance between planes π_1 and π_2

$$\pi_1$$
: $x + y - z + 2 = 0$

$$\pi_2$$
: $x + y - z + 6 = 0$

95. The plane π has vector equation: $\mathbf{r} = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} + \beta \begin{pmatrix} 4 \\ 1 \\ 0 \end{pmatrix} + \rho \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$. Show that the point with

position vector $\begin{pmatrix} 2 \\ 2 \\ -7 \end{pmatrix}$ lies on the plane π .

- 96. Find the perpendicular distance from the plane r. (i + j + 2k) = 4 to the origin.
- 97. Find the co-ordinates of the foot of the perpendicular drawn from point A(1,0,-1) to the;
 - a) Plane: r.(i j + k) = 6
 - b) Line: $\frac{x+1}{2} = \frac{y-4}{-1} = \frac{z+2}{3}$
- 98. Prove that (0,0,0) and (2,-3,7) lie on the same side of the plane: 2x 3y + 2z + 8 = 0.
- 99. Find the cartesian equation of the plane that contains point (1,1,-2) and normal to the vector 2i 3j + 4k.
- 100. A plane π : 2x 3y + z = 5 and the line l: $\mathbf{r} = \begin{cases} y = 3 t \\ z = 2 + 3t \text{ intersect at R. Find the;} \\ x = 1 + 2t \end{cases}$
 - a) Position vector of R
 - b) Angle between π and l
 - c) Distance of l from the origin
 - d) Equation of the plane π_0 that contains l and parallel to vector $\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$.

END

© jkbegumisa2025@gmail.com - +256786108453/+256700798389